Partitioning the metabolic scope: the importance of anaerobic metabolism and implications for the oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis
نویسندگان
چکیده
Ongoing climate change is predicted to affect the distribution and abundance of aquatic ectotherms owing to increasing constraints on organismal physiology, in particular involving the metabolic scope (MS) available for performance and fitness. The oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis prescribes MS as an overarching benchmark for fitness-related performance and assumes that any anaerobic contribution within the MS is insignificant. The MS is typically derived from respirometry by subtracting standard metabolic rate from the maximal metabolic rate; however, the methodology rarely accounts for anaerobic metabolism within the MS. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), this study tested for trade-offs (i) between aerobic and anaerobic components of locomotor performance; and (ii) between the corresponding components of the MS. Data collection involved measuring oxygen consumption rate at increasing swimming speeds, using the gait transition from steady to unsteady (burst-assisted) swimming to detect the onset of anaerobic metabolism. Results provided evidence of the locomotor performance trade-off, but only in S. aurata. In contrast, both species revealed significant negative correlations between aerobic and anaerobic components of the MS, indicating a trade-off where both components of the MS cannot be optimized simultaneously. Importantly, the fraction of the MS influenced by anaerobic metabolism was on average 24.3 and 26.1% in S. aurata and P. reticulata, respectively. These data highlight the importance of taking anaerobic metabolism into account when assessing effects of environmental variation on the MS, because the fraction where anaerobic metabolism occurs is a poor indicator of sustainable aerobic performance. Our results suggest that without accounting for anaerobic metabolism within the MS, studies involving the OCLTT hypothesis could overestimate the metabolic scope available for sustainable activities and the ability of individuals and species to cope with climate change.
منابع مشابه
Phenotypic variation in metabolism and morphology correlating with animal swimming activity in the wild: relevance for the OCLTT (oxygen- and capacity-limitation of thermal tolerance), allocation and performance models
Ongoing climate change is affecting animal physiology in many parts of the world. Using metabolism, the oxygen- and capacity-limitation of thermal tolerance (OCLTT) hypothesis provides a tool to predict the responses of ectothermic animals to variation in temperature, oxygen availability and pH in the aquatic environment. The hypothesis remains controversial, however, and has been questioned in...
متن کاملPragmatic perspective on aerobic scope: peaking, plummeting, pejus and apportioning.
A major challenge for fish biologists in the 21st century is to predict the biotic effects of global climate change. With marked changes in biogeographic distribution already in evidence for a variety of aquatic animals, mechanistic explanations for these shifts are being sought, ones that then can be used as a foundation for predictive models of future climatic scenarios. One mechanistic expla...
متن کاملAerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations.
Measurements of aerobic scope [the difference between minimum and maximum oxygen consumption rate ( and , respectively)] are increasing in prevalence as a tool to address questions relating to fish ecology and the effects of climate change. However, there are underlying issues regarding the array of methods used to measure aerobic scope across studies and species. In an attempt to enhance quali...
متن کاملAerobic scope does not predict the performance of a tropical eurythermal fish at elevated temperatures.
Climate warming is predicted to negatively impact fish populations through impairment of oxygen transport systems when temperatures exceed those which are optimal for aerobic scope (AS). This concept of oxygen- and capacity-limited thermal tolerance (OCLTT) is rapidly gaining popularity within climate change research and has been applied to several fish species. Here, we evaluated the relevance...
متن کاملOxygen transport is not compromised at high temperature in pythons.
To evaluate whether the 'oxygen and capacity limited thermal tolerance' model (OCLTT) applies to an air-breathing ectothermic vertebrate, we measured oxygen uptake (V̇(O₂)), cardiac performance and arterial blood gases during a progressive rise of temperature from 30 to 40°C in the snake Python regius. V̇(O₂) of fasting snakes increased exponentially with temperature whereas V̇(O₂) of digesting sn...
متن کامل